博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
JVM类加载机制
阅读量:4095 次
发布时间:2019-05-25

本文共 6815 字,大约阅读时间需要 22 分钟。

一、类加载的时机

        类从加载到虚拟机内存中开始到卸载出内存为止,它的整个生命周期包括:加载、验证、准备、解析、初始化、使用和卸载。其中验证、准备、解析三个部分统称为连接,如下图所示:

        加载、验证、准备、初始化和卸载这5个阶段的顺序是确定的,类的加载过程必须按照这种顺序按部就班地开始,而解析阶段则不一定:它在某些情况下可以在初始化阶段之后再开始,这是为了支持Java语言的运行时绑定(也称为动态绑定或晚期绑定)。那么什么情况下需要开始类加载的第一个阶段:加载?

  • 遇到new、getstatic、putstatic或invokestatic这四条字节码指令时,如果类没有进行过初始化,就需要进行类的初始化。这些场景包括:使用new关键字实例化对象时、读取或设置一个类的静态字段(被final修饰、已在编译器把结果放入常量池的静态字段除外)时,以及调用一个类的静态方法时;
  • 使用java.lang.reflect包的方法对类进行反射调用的时候,如果类没有进行过初始化,就需要先进行类的初始化;
  • 当初始化一个类的时候,如果发现父类还没有进行过初始化,则需要先初始化父类;
  • 当虚拟机启动时,用户需要指定一个要执行的主类(包含main方法的那个类),虚拟机会先初始化这个主类;
  • 当使用JDK 1.7的动态语言支持时,如果一个java.lang.invoke.MethodHandle实例最后的解析结果REF_getStatic、REF_putStatic、REF_invokeStatic的方法句柄,并且这个方法句柄所对应的类没有进行过初始化,则需要先触发其初始化;

二、类的加载过程

1、加载

      加载”只是“类加载”过程的一个阶段,在加载阶段,虚拟机需要完成以下3件事情:

  • 通过一个类的全限定名来获取定义此类的二进制字节流;
  • 将这个字节流所代表的静态存储结构转化为方法区的运行时数据结构;
  • 在内存中生成一个代表这个类的java.lang.Class对象,作为方法区这个类的各种数据的访问入口。该Class类对象没有明确规定是在Java堆中,对于HotSpot虚拟机而言,Class对象比较特殊,它虽然是对象,但是存放在方法区里面。

       对于数组类而言,数组类本身不通过类加载器创建,它是由Java虚拟机直接创建的,但是数组类的元素类型(Element Type,是指数组去掉所有维度的类型)最终要靠类加载器去创建,一个数组类(简称为C)创建过程要遵循以下规则:

  • 如果数组的组件类型(Component Type,指的是数组去掉一个维度的类型)是引用类型,则递归地加载这个组件类型,数组C将在加载该组件类型的类加载器的类名称空间上被标识。
  • 如果数组的组件类型不是引用类型(例如int[]数组),则Java虚拟机将会把数组C标记为与引导类加载器关联。
  • 数组类的可见性与它的组件类型的可见性一致,如果组件类型不是引用类型,那数组类的可见性将默认为public。

2、验证

        验证是连接阶段的第一步,这一阶段的目的是为了确保Class文件的字节流中包含的信息符合当前虚拟机的要求,并且不会危害虚拟机自身的安全。

验证阶段大致会完成4个阶段的检验动作:

  • 文件格式验证:验证字节流是否符合Class文件格式的规范;例如:是否以魔术0xCAFEBABE开头、主次版本号是否在当前虚拟机的处理范围之内、常量池中的常量是否有不被支持的类型。
  • 元数据验证:对字节码描述的信息进行语义分析(注意:对比javac编译阶段的语义分析),以保证其描述的信息符合Java语言规范的要求;例如:这个类是否有父类,除了java.lang.Object之外。
  • 字节码验证:通过数据流和控制流分析,确定程序语义是合法的、符合逻辑的。
  • 符号引用验证:确保解析动作能正确执行。

       验证阶段是非常重要的,这个阶段是否严谨直接决定Java虚拟机是否能够承受恶意代码的攻击。从执行性能的角度来讲,验证阶段的工作量在虚拟机的类加载子系统中又占了相当大的一部分。

3、准备

       准备阶段是正式为类变量分配内存并设置类变量初始值的阶段,这些变量所使用的内存都将在方法区中进行分配。这时候进行内存分配的仅包括类变量(被static修饰的变量),而不包括实例变量,实例变量将会在对象实例化时随着对象一起分配在堆中。其次,这里所说的初始值“通常情况”下是数据类型的零值,假设一个类变量的定义为:

1

public static int value=123;

       那变量value在准备阶段过后的初始值为0而不是123.因为这时候尚未开始执行任何java方法,而把value赋值为123的putstatic指令是程序被编译后,存放于类构造器()方法之中,所以把value赋值为123的动作将在初始化阶段才会执行。

至于“特殊情况”是指:public static final int value=123,即当类字段的字段属性是ConstantValue时,会在准备阶段初始化为指定的值,所以标注为final之后,value的值在准备阶段初始化为123而非0。

4、解析

      解析阶段是虚拟机将常量池内的符号引用替换为直接引用的过程,符号引用和直接引用的关联如下:

       符号引用以一组符号来描述所引用的目标,符号可以是任何形式的字面量,只要使用时无歧义地定位到目标即可。符号引用与虚拟机实现的内存布局无关,引用的目标不一定已经加载到内存中。各种虚拟机实现的内存布局可以不同,但是它们能够接受的符号引用必须是一致的,因为符号引用的字面量形式明确定义在Java虚拟机规范的Class文件格式中。

       直接引用可以是直接指向目标的指针、相对偏移量或者是一个能简介定位到目标的句柄,直接引用是和虚拟机实现的内存布局相关的,同一个符号引用在不同虚拟机上翻译出来的直接引用一般会不相同。如果有了直接引用,那引用的目标必定已经在内存中存在。

5、初始化

       初始化是类加载过程的最后一步,此阶段根据程序员编写的程序制定的计划去初始化类变量和其他资源,或者可以说初始化阶段是执行类构造器<clinit>()方法的过程。

       <clinit>()方法是由编译器自动收集类中的所有类变量的赋值动作和静态语句块(static{ }块)中的语句合并产生的,静态语句块中只能访问到定义在静态语句块之前的变量,定义在它之后的变量,在前面的语句块可以赋值,但是不能访问。如下述代码:

public class Test {    static {        i = 0;  // 给变量赋值可以正常编译通过        System.out.println(i);  // 这句编译器会提示“非法向前引用”    }     static int i = 1;}

        <clinit>()方法与类的构造函数(或者说实例构造器<init>()方法)不同,它不需要显示地调用父类构造器,虚拟机会保证在子类的<clinit>()方法执行之前,父类的<clinit>()方法已经执行完毕。
由于父类的<clinit>()方法先执行,所以父类的静态语句块要优先于子类的变量赋值操作。如下述代码,输出的值为2而不是1:

static class Parent {    public static int A = 1;     static {        A = 2;    }} static class Sub extends Parent {    public static int B = A;} public static void main(String[] args) {    System.out.println(Sub.B);}

        <clinit>()方法对于类或者接口来说不是必需的,如果一个类中没有静态语句块,也没有对变量的赋值操作,那么编译器可以不为这个类生成<clinit>()方法。

        接口中不能有静态语句块,但仍然有变量初始化的赋值操作,因此接口也会生成<clinit>()方法,与普通类不同的是,执行接口的<clinit>()方法不需要先执行父接口的<clinit>()方法,只有当父接口的变量使用时,才会初始化,另外,接口的实现类在初始化时也一样不会执行接口的<clinit>()方法。
        虚拟机会保证一个类的<clinit>()方法在多线程环境中被正确的加载、同步。如果多个线程同时去初始化一个类,那么只会有一个线程去执行这个类的<clinit>()方法,其它线程都需要阻塞等待。

三、类加载器

       类加载的过程是通过类加载器来完成的。类加载器是Java语言的一个重要创新,许多有用的技术都是基于类加载器实现的,比如类层次划分、OSGi、热部署、代码加密等。

1、类与类加载器

       虽然类加载器只用于类的加载动作,但在Java程序中还有着很大的作用。对于任意一个类,都需要加载它的类加载器和这个类本身来确定这个类在Java虚拟机中的唯一性,每一个类加载器都有一个独立的类名称空间。也就是说,如果比较两个类是否是同一个类,除了这比较这两个类本身的全限定名是否相同之外,还要比较这两个类是否是同一个类加载器加载的。即使同一个类文件两次加载到同一个虚拟机中,但如果是由两个不同的类加载器加载的,那这两个类仍然不是同一个类。       这个相等性比较会影响一些方法,比如Class对象的equals方法、isAssignableFrom方法、isInstance方法等,还有instanceof关键字做对象所属关系判定等。下面的代码演示了不同的类加载器对instanceof关键字的影响:

package jvm;    import java.io.IOException;  import java.io.InputStream;    public class ClassLoaderTest {      public static void main(String[] args) throws Exception{          ClassLoader loader=new ClassLoader() {              @Override              public Class
 loadClass(String name)throws ClassNotFoundException{                  try{                      String filename=name.substring(name.lastIndexOf(".")+1)+".class";                      InputStream is=getClass().getResourceAsStream(filename);                      if(is==null){                          return super.loadClass(name);                      }                      byte[] b=new byte[is.available()];                      is.read(b);                      return defineClass(name,b,0,b.length);                  }catch(IOException e){                      throw new ClassNotFoundException(name);                  }              }          };          Object obj=loader.loadClass("jvm.ClassLoaderTest").newInstance();          System.out.println(obj.getClass());          System.out.println(obj instanceof jvm.ClassLoaderTest);      }  }  运行结果:class jvm.ClassLoaderTestfalse

       这里构造了一个简单的类加载器,它可以加载与自己在同一个路径下的Class文件。然后使用这个类加载器去加载全限定名是“jvm.ClassLoaderTest”的类,并实例化了这个类的对象。从第一行输出可以看出,这个对象确实是jvm.ClassLoaderTest类的一个实例,但第二句输出表明在做instanceof检查时出现了false,这是因为这时虚拟机中有两个jvm.ClassLoaderTest类,一个是系统应用程序类加载器加载的,另一个是自定义的类加载器加载的,这两个类虽然来自同一个Class文件,但是加载它们的类加载器不同,导致类型检查时结果是false。

2、双亲委派模型

       从Java虚拟机的角度看,只有两种不同的类加载器,一种是启动类加载器,这个类加载是由C++实现的,是虚拟机的一部分;另一个是所有其它的类加载器,都是由Java实现的,独立在虚拟机外部,并且全部继承自java.lang.ClassLoader抽象类。

      不过在Java开发者看来,类加载器的细致划分可以划分为三种:

  • 启动类加载器:负责将存放在<JAVA_HOME>\lib目录中的,或者被-Xbootclasspath参数所指定的路径中的,并且是虚拟机识别的类库加载到虚拟机内存中。启动类加载器无法被Java程序直接引用,用户在编写自定义类加载器时,如果需要把加载请求委派给引导类加载器,那直接使用null代替即可。
  • 扩展类加载器:这个加载器由sun.misc.Launcher$ExtClassLoader实现,负责加载<JAVA_HOME>\lib\ext目录下的,或者被java.ext.dirs系统变量所指定的路径中的所有类库,开发者可以直接使用扩展类加载器。
  • 应用程序类加载器:这个类加载器是由sun.misc.Launcher$AppClassLoader实现的。由于这个类加载器是ClassLoader中的getSystemClassLoader方法的返回值,所以也叫系统类加载器。它负责加载用户类路径上所指定的类库,开发者可以直接使用这个类加载器,如果应用程序中没有自定义过自己的类加载器,一般情况下这个就是程序中默认的类加载器。

      用户的应用程序就是在这三个类加载器的配合下加载的。不过,用户还可以加入自己的类加载器,这些类加载器的关系如下图:

       这种类加载的层次关系,称为类加载器的双亲委派模型。双亲委派模型要求除了顶层的启动类加载器之外,其余的类加载器都应当有自己的父类加载器。不过这个父子关系不是通过继承实现的,而是使用组合关系来复用父加载器的代码。

       双亲委派模型的工作过程如下:如果一个类加载器收到了类加载的请求,它首先不会自己去尝试加载这个类,而是把这个请求委派给父类加载器去完成,每一个层次的类加载器都是如此,因此所有的加载请求最终都会传送到顶层的启动类加载器中,只有当父类加载器反馈自己无法完成这个加载请求(它的搜索范围内没找到这个类)时,自加载器才会尝试自己加载。

       这种模型的一个好处就是由于类加载器有一种层次关系,导致类也有一种层次关系,从而有了优先级。比如类java.lang.Object,它存放在rt.jar中,无论哪个类加载器要加载这个类,最终都要委派给启动类加载器去加载,因此Object类在各个类加载器环境中都是同一个类。相反,如果没有使用双亲委派模型,由各个类加载器去自行加载,如果用户自己编写了一个称为java.lang.Object的类,并放在程序的ClassPath中,那系统将会有多个不同的Object类,java类型体系中最基础的行为也就没有办法保证了。

3、双亲委派模型的破坏

       不过,双亲委派模型并不是一个强制性的约束模型,而是一个推荐实现类加载的方式。但也会有例外,导致破坏双亲委派模型。

       首先,双亲委派模型是JDK 1.2之后引入的,而ClassLoader类在JDK 1.0就有了,为了向前兼容,不得做出一些妥协。

       还有,类加载器的层次结构解决了基础类的统一问题,但是如果基础类要回调用户的代码呢?这也破坏了双亲委托模型。

       最后就是语言动态性造成的。

       这部分对于双亲委派模型的破坏的介绍不是很多,只要知道这只是一个推荐模型即可。

 

 

 

 

 

 

 

 

你可能感兴趣的文章
SSM-CRUD (3)---查询功能改造
查看>>
Nginx(2)---安装与启动
查看>>
springBoot(5)---整合servlet、Filter、Listener
查看>>
C++ 模板类型参数
查看>>
C++ 非类型模版参数
查看>>
设计模式 依赖倒转原则 & 里氏代换原则
查看>>
DirectX11 光照
查看>>
图形学 图形渲染管线
查看>>
DirectX11 计时和动画
查看>>
DirectX11 光照与材质的相互作用
查看>>
DirectX11 法线向量
查看>>
DirectX11 兰伯特余弦定理(Lambert)
查看>>
DirectX11 漫反射光
查看>>
DirectX11 环境光
查看>>
DirectX11 镜面光
查看>>
DirectX11 三种光照组成对比
查看>>
DirectX11 指定材质
查看>>
DirectX11 平行光
查看>>
DirectX11 点光
查看>>
DirectX11 聚光灯
查看>>